Part Number Hot Search : 
R6031435 CM32TR R48S1 71360 LM393A HT82K629 MB62CAT3 5262B
Product Description
Full Text Search
 

To Download TSH7006 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TSH70,71,72,73,74,75
Rail-to-Rail, Wide-Band, Low-Power Operational Amplifiers

3V, 5V, 5V specifications 3dB bandwidth: 90MHz Gain bandwidth product: 70MHz Slew rate: 100V/ms Output current: up to 55mA Input single supply voltage Output rail-to-rail Specified for 150 loads Low distortion, THD: 0.1% SOT23-5, TSSOP and SO packages
Pin Connections (top view)
TSH70 : SOT23-5/SO8
Output 1 VCC - 2 Non-Inv. In. 3 5 VCC + NC 1 Inv. In. 2 4 Inv. In. Non-Inv. In. 3 VCC - 4 _ + 8 NC 7 VCC + 6 Output 5 NC
+-
TSH71 : SO8/TSSOP8
NC 1 Inverting Input 2 Non Inverting Input 3 VCC - 4 _ + 8 STANDBY 7 VCC + 6 Output 5 NC
TSH72 : SO8/TSSOP8
Description
The TSH7x series offers single, dual, triple and quad operational amplifiers featuring high video performances with large bandwidth, low distortion and excellent supply voltage rejection. Running with a single supply voltage from 3V to 12V, these amplifiers feature a large output voltage swing and high output current capable of driving standard 150 loads. A low operating voltage makes TSH7x amplifiers ideal for use in portable equipment. The TSH71, TSH73 and TSH75 also feature standby inputs, each of which allows the op-amp to be put into a standby mode with low power consumption and high output impedance. This function allows power saving or signal switching/multiplexing for high-speed applications and video applications. To economize both board space and weight, the TSH7x series is proposed in SOT23-5, TSSOP and SO packages.
Output1 1 Inverting Input1 2 Non Inverting Input1 3 VCC - 4 _ + _ +
8 VCC + 7 Output2 6 Inverting Input2 5 Non Inverting Input2
TSH73 : SO14/TSSOP14
STANDBY1 1 STANDBY2 2 STANDBY3 3 VCC + 4 Non Inverting Input1 5 Inverting Input1 6 Output1 7 + _ + _ _ + 14 Output3 13 Inverting Input3 12 Non Inverting Input3 11 VCC 10 Non Inverting Input2 9 Inverting Input2 8 Output2
TSH74 : SO14/TSSOP14
Output1 1 Inverting Input1 2 Non Inverting Input1 3 VCC + 4 Non Inverting Input2 5 Inverting Input2 6 Output2 7 + _ + _ _ + _ + 14 Output4 13 Inverting Input4 12 Non Inverting Input4 11 VCC 10 Non Inverting Input3 9 Inverting Input3 8 Output3
TSH75 : SO16/TSSOP16
Output1 1 Inverting Input1 2 Non Inverting Input1 3 VCC + 4 _ + _ + 16 Output4 15 Inverting Input4 14 Non Inverting Input4 13 VCC + _ + _ 12 Non Inverting Input3 11 Inverting Input3 10 Output3 9 STANDBY
Applications

Non Inverting Input2 5 Inverting Input2 6
Video buffers ADC driver Hi-fi applications
Rev. 3
Output2 7 STANDBY 8
May 2006
1/33
www.st.com
33
Order Codes
TSH70,71,72,73,74,75
1
Order Codes
Temperature Range Package SOT23-5 SO-8 SO-8 TSSOP8 (Thin Shrink Outline Package) SO-8 TSSOP8 (Thin Shrink Outline Package) 0C to 70C SO-14 TSSOP14 (Thin Shrink Outline Package) SO-14 TSSOP14 (Thin Shrink Outline Package) SO-16 TSSOP16 (Thin Shrink Outline Package) Packing Tape & Reel Tube or Tape & Reel Tube or Tape & Reel Tape & Reel Tube or Tape & Reel Tape & Reel Tube or Tape & Reel Tape & Reel Tube or Tape & Reel Tape & Reel Tube or Tape & Reel Tape & Reel Marking K301 70C 71C 71C 72C 72C 73C 73C 74C 74C 75C 75C
Part Number TSH70CLT TSH70CD/CDT TSH71CD/CDT TSH71CPT TSH72CD/CDT TSH72CPT TSH73CD/CDT TSH73CPT TSH74CD/CDT TSH74CPT TSH75CD/CDT TSH75CPT
2/33
TSH70,71,72,73,74,75
Typical Application: Video Driver
2
Typical Application: Video Driver
A typical application for the TSH7x family is that of video driver for driving STi7xxx DAC outputs on 75-ohm lines.
Figure 1 show the benefits of the TSH7x family as single supply drivers.
Figure 1. Benefits of TSH7x family: +3V or +5V single supply solution
+5V
Video DAC's outputs: Bottom of synchronization tip around 50mV
Vcc=+5V Vcc=+3V
VOH=4.2Vmin. (Tested) 2.1V
+3V
VOH=2.45Vmin. (Tested) 2.1V
1Vp-p
GND
+
Gain=2
2Vp-p VOL=40mVmax. (Tested)
2Vp-p VOL=30mVmax. (Tested)
50mV
_
GND GND
GND
100mV
100mV
1k
GND
1k
-5V
Video DAC
Y,G
Reconstruction Filtering
+5V
+ _
75
75 Cable
LPF
1Vpp
TV
75
2Vpp
Video DAC
Pb,B
Reconstruction Filtering
LPF
+ _
75
75 Cable
0.7Vpp
75
1.4Vpp
Reconstruction Filtering
Video DAC
Pr,R
LPF
+ _
TSH73 GND
75
75 Cable
0.7Vpp
75
1.4Vpp
3/33
Absolute Maximum Ratings & Operating Conditions
TSH70,71,72,73,74,75
3
Absolute Maximum Ratings & Operating Conditions
Table 1.
Symbol
VCC Vid Vi Toper Tstg Tj Supply Voltage (1) Differential Input Voltage Input Voltage
(3) (2)
Absolute maximum ratings (AMR)
Parameter Value
14 2 6 0 to +70 -65 to +150 150
(4)
Unit
V V V C C C
Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal resistance junction to case SOT23-5 SO-8 SO-14 SO-16 TSSOPO8 TSSOP14 TSSOP16
Rthjc
80 28 22 35 37 32 35 250 157 125 110 130 110 110 2
C/W
Rthja
Thermal resistance junction to ambient area SOT23-5 SO-8 SO-14 SO-16 TSSOPO8 TSSOP14 TSSOP16 Human Body Model
C/W
ESD
kV
1. All voltages values, except differential voltage are with respect to network ground terminal 2. Differential voltages are non-inverting input terminal with respect to the inverting terminal 3. The magnitude of input and output must never exceed VCC +0.3V 4. Short-circuits can cause excessive heating
Table 2.
Symbol
VCC VIC Standby
Operating conditions
Parameter
Supply Voltage Common Mode Input Voltage Range VCC-
Value
3 to 12 to
-)
Unit
V -1.1)
+)
(VCC+
V V
(VCC to (VCC
4/33
TSH70,71,72,73,74,75
Electrical Characteristics
4
Table 3.
Symbol
|V io| Vio Iio Iib Cin ICC
Electrical Characteristics
VCC+ = 3V, VCC- = GND, VIC = 1.5V, Tamb = 25C (unless otherwise specified)
Parameter
Input Offset Voltage Input Offset Voltage Drift vs. Temp. Input Offset Current Input Bias Current Input Capacitance Supply Current per Operator Common Mode Rejection Ratio (VIC/Vio) Supply Voltage Rejection Ratio (VCC/Vio) Power Supply Rejection Ratio (VCC/Vout) Large Signal Voltage Gain Tamb = 25C Tmin. < Tamb < Tmax. +0.1Test Conditions
Tamb = 25C Tmin. < Tamb < Tmax. Tmin. < Tamb < Tmax. Tamb = 25C Tmin. < Tamb < Tmax. Tamb = 25C Tmin. < Tamb < Tmax.
Min.
Typ.
1.2 4 0.1 6 0.2 7.2
Max.
10 12 3.5 5 15 20 9.8 11
Unit
mV V/C A A pF mA
CMRR
90 74
dB
SVRR PSRR
dB dB
75
Avd
70 65
81
dB
Io
Output Short Circuit Current Source
30 20
43 33
mA
22 19 2.45 2.60 2.87 2.91 2.93 2.77 2.90 2.92 2.93 V
2.65
Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 1.5V
2.4 2.6
5/33
Electrical Characteristics Table 3.
Symbol
TSH70,71,72,73,74,75
VCC+ = 3V, VCC- = GND, VIC = 1.5V, Tamb = 25C (unless otherwise specified)
Parameter Test Conditions
Tamb =25C RL = 150 to GND RL = 600 to GND RL = 2k to GND RL = 10k to GND
Min.
Typ.
10 11 11 11 140 90 68 57
Max.
30
Unit
VOL
Low Level Output Voltage
RL = RL = RL = RL =
150 to 1.5V 600 to 1.5V 2k to 1.5V 10k to 1.5V
300
mV
Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 1.5V GBP Bw SR m en Gain Bandwidth Product Bandwidth @-3dB Slew Rate Phase Margin Equivalent Input Noise Voltage F=10MHz AVCL=+11 AVCL=-10 AVCL =+1, RL=150 to 1.5V AVCL =+2, RL=150 // CL to 1.5V CL = 5pF CL = 30pF RL=150 // 30pF to 1.5V F=100kHz AVCL =+2, F=4MHz, RL=150 // 30pF to 1.5V Vout=1Vpp Vout=2Vpp 65 55 87 80 85 40 11
40 350 MHz MHz V/s nV/Hz
45
THD
Total Harmonic Distortion
-61 -54
dB
IM2
AVCL =+2, Vout=2Vpp RL=150 to 1.5V Second order intermodulation product Fin1=180kHz, Fin2=280KHz spurious measurements @100kHz AVCL =+2, Vout=2Vpp RL=150 to 1.5V Fin1=180kHz, Fin2=280KHz spurious measurements @400kHz AVCL =+2, RL=150 to 1.5V F=4.5MHz, V out=2Vpp AVCL =+2, RL=150 to 1.5V F=4.5MHz, V out=2Vpp F=DC to 6MHz, A VCL=+2 F=1MHz to 10MHz
-76
dBc
IM3
Third order inter modulation product
-68
dBc
G Df Gf
Differential gain Differential phase Gain Flatness
0.5 0.5 0.2 65
% dB dB
Vo1/Vo2 Channel Separation
6/33
TSH70,71,72,73,74,75 Table 4.
Symbol
|Vio| Vio Iio Iib Cin ICC
Electrical Characteristics
VCC+ = 5V, VCC- = GND, VIC = 2.5V, Tamb = 25C (unless otherwise specified)
Parameter
Input Offset Voltage Input Offset Voltage Drift vs. Temp. Input Offset Current Input Bias Current Input Capacitance Supply Current per Operator Common Mode Rejection Ratio (VIC/Vio) Supply Voltage Rejection Ratio (VCC/Vio) Power Supply Rejection Ratio (VCC/Vout) Tamb = 25C Tmin. < Tamb < Tmax. +0.1Test Conditions
Tamb = 25C Tmin. < Tamb < Tmax. Tmin. < Tamb < Tmax. Tamb = 25C Tmin. < Tamb < Tmax. Tamb = 25C Tmin. < Tamb < Tmax.
Min.
Typ. Max.
1.1 3 0.1 6 0.3 8.2 10.5 11.5 3.5 5 15 20 10 12
Unit
mV V/C A A pF mA
CMRR
72 71 68 67
97 75
dB
SVRR PSRR
dB dB
75
Avd
Large Signal Voltage Gain
75 70
84
dB
Io
Output Short Circuit Current Source
35 33
55 55
mA
34 32 4.2 4.36 4.85 4.90 4.93 4.66 4.90 4.92 4.93 V
VOH
High Level Output Voltage
RL = 150 to 2.5V RL = 600 to 2.5V RL = 2k to 2.5V RL = 10k to 2.5V Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 2.5V
4.5
4.1 4.4
7/33
Electrical Characteristics Table 4.
Symbol
TSH70,71,72,73,74,75
VCC+ = 5V, VCC- = GND, VIC = 2.5V, Tamb = 25C (unless otherwise specified)
Parameter Test Conditions
Tamb=25C RL = 150 to GND RL = 600 to GND RL = 2k to GND RL = 10k to GND
Min.
Typ. Max.
20 23 23 23 220 105 76 61 40
Unit
VOL
Low Level Output Voltage
RL = 150 to 2.5V RL = 600 to 2.5V RL = 2k to 2.5V RL = 10k to 2.5V Tmin. < Tamb < Tmax. RL = 150 to GND RL = 150 to 2.5V
400
mV
60 450 65 55 87 MHz MHz
GBP Bw
Gain Bandwidth Product Bandwidth @-3dB
F=10MHz AVCL=+11 AVCL=-10 AVCL=+1, R L=150 to 2.5V AVCL=+2, RL=150 // CL to 2.5V CL = 5pF CL = 30pF RL=150 // 30pF to 2.5V F=100kHz AVCL=+2, F=4MHz RL=150 // 30pF to 2.5V Vout=1Vpp Vout=2Vpp
SR m en
Slew Rate
60
104 105 40 11
V/s
Phase Margin Equivalent Input Noise Voltage
nV/Hz
THD
Total Harmonic Distortion
-61 -54
dB
IM2
AVCL=+2, V out=2Vpp RL=150 to 2.5V Second order intermodulation product Fin1=180kHz, Fin2=280kHz spurious measurements @100kHz AVCL=+2, V out=2Vpp RL=150 to 2.5V Fin1=180kHz, Fin2=280KHz spurious measurements @400kHz AVCL=+2, R L=150 to 2.5V F=4.5MHz, V out=2Vpp AVCL=+2, R L=150 to 2.5V F=4.5MHz, V out=2Vpp F=DC to 6MHz, A VCL=+2 F=1MHz to 10MHz
-76
dBc
IM3
Third order inter modulation product
-68
dBc
G Df Gf
Differential gain Differential phase Gain Flatness
0.5 0.5 0.2 65
% dB dB
Vo1/Vo2 Channel Separation
8/33
TSH70,71,72,73,74,75 Table 5.
Symbol
|V io| Vio Iio Iib Cin ICC
Electrical Characteristics
VCC+ = 5V, VCC- = -5V, VIC = GND, Tamb = 25C (unless otherwise specified)
Parameter
Input Offset Voltage Input Offset Voltage Drift vs. Temp. Input Offset Current Input Bias Current Input Capacitance Supply Current per Operator Common Mode Rejection Ratio (VIC/Vio) Supply Voltage Rejection Ratio (VCC/Vio) Power Supply Rejection Ratio (VCC/Vout) Tamb = 25C Tmin. < Tamb < Tmax. -4.9Test Conditions
Tamb = 25C Tmin. < Tamb < Tmax. Tmin. < Tamb < Tmax. Tamb = 25C Tmin. < Tamb < Tmax. Tamb = 25C Tmin. < Tamb < Tmax.
Min.
Typ. Max.
0.8 2 0.1 6 0.7 9.8 12.3 13.4 3.5 5 15 20 10 12
Unit
mV V/C A A pF mA
CMRR
106 77
dB
SVRR PSRR
dB dB
75
Avd
Large Signal Voltage Gain
75 70
86
dB
Io
Output Short Circuit Current Source
35 30
55 55
mA
34 29 4.2 4.36 4.85 4.9 4.93
VOH
High Level Output Voltage
V
4.1 -4.63 -4.86 -4.9 -4.93 -4.4 V
VOL
Low Level Output Voltage
-4.3
9/33
Electrical Characteristics Table 5.
Symbol
GBP
TSH70,71,72,73,74,75
VCC+ = 5V, VCC- = -5V, VIC = GND, Tamb = 25C (unless otherwise specified)
Parameter
Gain Bandwidth Product
Test Conditions
F=10MHz AVCL=+11 AVCL=-10 AVCL=+1 RL=150 // 30pF to GND AVCL=+2, RL=150 // C L to GND CL = 5pF CL = 30pF RL=150 to GND F=100kHz AVCL=+2, F=4MHz RL=150 // 30pF to GND Vout=1Vpp Vout=2Vpp
Min.
Typ. Max.
65 55 100
Unit
MHz
Bw
Bandwidth @-3dB
MHz
SR
Slew Rate
68
117 118 40 11
V/s
m en
Phase Margin Equivalent Input Noise Voltage
nV/Hz
THD
Total Harmonic Distortion
-61 -54
dB
IM2
AVCL=+2, Vout=2Vpp RL=150 to GND Second order intermodulation product Fin1=180kHz, Fin2=280KHz spurious measurements @100kHz AVCL=+2, Vout=2Vpp RL=150 to GND Fin1=180kHz, Fin2=280KHz spurious measurements @400kHz AVCL=+2, RL=150 to GND F=4.5MHz, Vout=2Vpp AVCL=+2, RL=150 to GND F=4.5MHz, Vout=2Vpp F=DC to 6MHz, AVCL=+2 F=1MHz to 10MHz
-76
dBc
IM3
Third order intermodulation product
-68
dBc
G Df Gf
Differential gain Differential phase Gain Flatness
0.5 0.5 0.2 65
% dB dB
Vo1/Vo2 Channel Separation
10/33
TSH70,71,72,73,74,75
Electrical Characteristics
4.1
Table 6.
Symbol
Vlow Vhigh
Standby mode
VCC+, VCC-, Tamb = 25C (unless otherwise specified)
Parameter
Standby Low Level Standby High Level pin 8 (TSH71) to pin 1,2 or 3 (TSH73) to VCCpin 8 (TSH75) to VCC+ pin 9 (TSH75) to VCCRout Cout VCC-
Test Conditions
Min.
VCC(V CC- +2)
Typ.
Max.
(V CC+0.8) (V CC+)
Unit
V V
Current Consumption per Operator ICC STBY when STANDBY is Active
20
55
A
Zout Ton Toff
Output Impedance (Rout//Cout) Time from Standby Mode to Active Mode Time from Active Mode to Standby Mode
10 17 2
M pF s s
Down to ICC STBY = 10A
10
TSH71 STANDBY CONTROL pin 8 (STBY)
Vlow Vhigh
OPERATOR STATUS
Standby Active
TSH73 STANDBY CONTROL pin 1 (STBY OP1)
Vlow Vhigh x x x x
OPERATOR STATUS OP1
Standby Active x x Vlow Vhigh x x
pin 2 (STBY OP2)
x x Vlow Vhigh x x
pin 3 (STBY OP3)
x x x
OP1
x x Standby Active x x
OP3
x x x x Standby Active
TSH75 STANDBY CONTROL pin 8 (STBY OP2)
Vhigh Vhigh Vlow Vlow
OPERATOR STATUS OP1
Active Active Active Active
pin 9 (STBY OP3)
Vlow Vhigh Vlow Vhigh
OP2
Standby Standby Active Active
OP3
Standby Active Standby Active
OP4
Active Active Active Active
11/33
Electrical Characteristics
TSH70,71,72,73,74,75
4.2
Figure 2.
Characteristic curves for VCC=3V
Closed loop gain and phase vs. frequency (Gain = +2, VCC = 1.5V, RL = 150, Tamb = 25C)
200
Figure 3.
Overshoot function of output capacitance (Gain = +2, VCC = 1.5V, Tamb = 25C)
150//33pF 150//22pF 150//10pF 150
10
10
5
Gain
0
100
5
Gain (dB)
-5
0
-10
Phase
Phase ()
Gain (dB)
0
-100 -15
-5 1E+6
-20 1E+4
1E+5
1E+6
1E+7
1E+8
-200 1E+9
1E+7
1E+8
1E+9
Frequency (Hz)
Frequency (Hz)
Figure 4.
Closed loop gain and phase vs. frequency (Gain = -10, VCC = 1.5V, RL = 150, Tamb = 25C)
200
Figure 5.
Closed loop gain and phase vs. frequency (Gain = +11, VCC = 1.5V, RL = 150, Tamb = 25C)
0
30
30
Phase
20
150
Phase
20
100
Gain (dB)
Gain (dB)
Gain
10 50
10
0 0 -50
-100 0
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-100 1E+9
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-150 1E+9
Frequency (Hz)
Frequency (Hz)
Figure 6.
Large signal measurement positive slew rate (Gain = 2, VCC = 1.5V, ZL = 150//5.6pF)
Figure 7.
Large signal measurement negative slew rate (Gain = 2, VCC = 1.5V, ZL = 150//5.6pF)
1
1
0.5
0.5
Vout (V)
Vout (V)
0
0
-0.5
-0.5
-1 0 10 20 30 40 50 60
-1 0 10 20 30 40 50
Time (ns)
Time (ns)
12/33
Phase ()
Phase ()
Gain
-50
TSH70,71,72,73,74,75 Figure 8. Small signal measurement - rise time (Gain = 2, VCC = 1.5V, ZL = 150) Figure 9.
Electrical Characteristics Small signal measurement - fall time (Gain = 2, V CC = 1.5V, ZL = 150)
0.06
0.06
0.04
0.04
Vin, Vout (V)
Vin, Vout (V)
0.02
0.02
Vout Vin
0
0
Vout Vin
-0.02
-0.02
-0.04
-0.04
-0.06 0 10 20 30 40 50 60
-0.06 0 10 20 30 40 50 60
Time (ns)
Time (ns)
Figure 10. Channel separation (Xtalk) vs. frequency (measurement configuration: Xtalk = 20log (V0/V1))
VIN
49.9
Figure 11. Channel separation (Xtalk) vs. frequency (Gain = +11, VCC = 1.5V, ZL = 150//27pF)
-20 -30
+ + 150
V1
Xtalk (dB)
-40 -50
4/1output 3/1output
100 1k
-60 -70 -80
2/1output
+ 49.9 100 1k 150
-90
VO
-100 -110 1E+4 1E+5 1E+6 1E+7
Frequency (Hz)
Figure 12. Equivalent noise voltage (Gain = 100, VCC = 1.5V, No load)
30
+ _
Figure 13. Maximum output swing (Gain = 11, V CC = 5V, RL = 150)
5 4 3
25
100
Vout
10k
2
Vin, Vout (V)
en (nV/Hz)
20
1 0 -1 -2
Vin
15
10
-3 -4
5 0.1 1 10 100 1000
-5 0.0E+0
5.0E-2
1.0E-1
1.5E-1
2.0E-1
Frequency (kHz)
Time (ms)
13/33
Electrical Characteristics Figure 14. Standby mode - Ton, Toff (VCC = 1.5V, open loop)
2
TSH70,71,72,73,74,75 Figure 15. Group delay gain = 2 (VCC = 1.5V, ZL = 150//27pF, Tamb = 25C)
Vin
1
Vin, Vout (V)
Gain
0
Vout
-1
-2
Standby
Ton
0 2E-6 4E-6 6E-6
Group Delay
5.87ns
Toff
8E-6 1E-5
Time (s)
Figure 16. Third order intermodulation(1) (Gain = 2, VCC = 1.5V, ZL = 150//27pF, Tamb = 25C)
0 -10 -20 -30
IM3 (dBc)
-40 -50 -60 -70 -80 -90
80kHz 740kHz
640kHz
380kHz
-100 0 1 2 3 4
Vout peak(V)
1. Note on intermodulation products: The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations.
14/33
TSH70,71,72,73,74,75
Electrical Characteristics
4.3
Characteristic curves for VCC=5V
Figure 18. Overshoot function of output capacitance (Gain = +2, VCC = 2.5V, Tamb = 25C)
10
Figure 17. Closed loop gain and phase vs. frequency (Gain = +2, VCC = 2.5V, RL = 150, Tamb = 25C)
10 200
5
150//33pF
Gain
100
5
150//22pF
Gain (dB)
Phase ()
0 -5
Gain (dB)
0
150//10pF
150
0
Phase
-100
-10
-15 1E+4
-200 1E+5 1E+6 1E+7 1E+8 1E+9
-5 1E+6
1E+7
1E+8
1E+9
Frequency (Hz)
Frequency (Hz)
Figure 19. Closed loop gain and phase vs. frequency (Gain = -10, V CC = 2.5V, RL = 150, Tamb = 25C)
30 200
Figure 20. Closed loop gain and phase vs. frequency (Gain = +11, VCC = 2.5V, RL = 150, Tamb = 25C)
30 0
Phase
20
150
Phase
20
100
-50
Gain (dB)
Phase ()
Gain
10 50
Gain (dB)
10
0 0 -50
-100 0
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-100 1E+9
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-150 1E+9
Frequency (Hz)
Frequency (Hz)
Figure 21. Large signal measurement - positive Figure 22. Large signal measurement slew rate (Gain = 2, VCC = 2.5V, negative slew rate (Gain = 2, ZL= 150//5.6pF) VCC = 2.5V, ZL = 150//5.6pF)
3
3
2
2
1
1
Vout (V)
0
Vout (V)
0
-1
-1
-2
-2
-3 0 10 20 30 40 50 60 70 80
-3 0 10 20 30 40 50 60 70
Time (ns)
Time (ns)
Phase ()
Gain
15/33
Electrical Characteristics Figure 23. Small signal measurement - rise time (Gain = 2, VCC = 2.5V, ZL = 150)
0.06
TSH70,71,72,73,74,75 Figure 24. Small signal measurement - fall time (Gain = 2, V CC = 2.5V, ZL= 150)
0.06
0.04
0.04
0.02
0.02
Vin, Vout (V)
Vin Vout (V)
Vout Vin
0
0
Vout Vin
-0.02
-0.02
-0.04
-0.04
-0.06 0 10 20 30 40 50 60
-0.06 0 10 20 30 40 50 60
Time (ns)
Time (ns)
Figure 25. Channel separation (Xtalk) vs. frequency (measurement configuration: Xtalk = 20log (V0/V1))
VIN
49.9
Figure 26. Channel separation (Xtalk) vs. frequency (Gain = +11, VCC = 2.5V, ZL = 150//27pF)
-20 -30
+ + 150
V1
Xtalk (dB)
-40 -50
4/1output 3/1output
100 1k
-60 -70 -80
+ 49.9 100 1k 150
2/1output
-90
VO
-100 -110 1E+4
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 27. Equivalent noise voltage (Gain = 100, VCC = 2.5V, no load)
30
+ _
10k 100
Figure 28. Maximum output swing (Gain = 11, V CC = 2.5V, RL = 150)
3
25
2
Vout
Vin, Vout (V)
1
en (nV/Hz)
20
Vin
0
15
-1
10
-2
5 0.1 1 10 100 1000
-3 0.0E+0
5.0E-2
1.0E-1
1.5E-1
2.0E-1
Frequency (kHz)
Time (ms)
16/33
TSH70,71,72,73,74,75 Figure 29. Standby mode - Ton, Toff (VCC = 2.5V, open loop)
3 2 1 0
Electrical Characteristics Figure 30. Group delay (Gain = 2, VCC = 2.5V, ZL = 150//27pF, Tamb = 25C)
Vin
Vin, Vout (V)
Gain
-1 -2 -3 0
Vout
Group Delay
Ton
2E-6
Standby
4E-6 6E-6
5.32ns
Toff
8E-6 1E-5
Time (s)
Figure 31. Third order intermodulation(1) (Gain = 2, VCC = 2.5V, ZL = 150//27pF, Tamb = 25C)
0 -10 -20 -30
IM3 (dBc)
-40 -50
740kHz 80kHz
-60 -70 -80 -90 -100 0 1 2 3 4
380kHz
640kHz
Vout peak(V)
1. Note on intermodulation products: The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations.
17/33
Electrical Characteristics
TSH70,71,72,73,74,75
4.4
Characteristic curves for VCC=10V
Figure 33. Overshoot function of output capacitance (Gain = +2, VCC = 5V, Tamb = 25C)
10
Figure 32. Closed loop gain and phase vs. frequency (Gain = +2, VCC = 5V, RL = 150, Tamb = 25C)
10 200
5
150//33pF
Gain
100
5
150//22pF
Gain (dB)
Phase ()
0 -5
Gain (dB)
0
150//10pF
150
0
Phase
-100 -10
-15 1E+4
1E+5
1E+6
1E+7
1E+8
-200 1E+9
-5 1E+6
1E+7
1E+8
1E+9
Frequency (Hz)
Frequency (Hz)
Figure 34. Closed loop gain and phase vs. frequency (Gain = -10, V CC = 5V, RL = 150, Tamb = 25C)
30 200
Figure 35. Closed Loop Gain and Phase vs. Frequency (Gain = +11, VCC = 5V, RL = 150, Tamb = 25C)
30 0
Phase
150 20 100
20
Phase
Phase ()
Gain (dB)
Gain (dB)
Gain
10
10
50
-100
0 0
0
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-50 1E+9
-10 1E+4
1E+5
1E+6
1E+7
1E+8
-150 1E+9
Frequency (Hz)
Frequency (Hz)
Figure 36. Large signal measurement - positive Figure 37. Large Signal Measurement slew rate (Gain = 2,VCC = 5V, Negative Slew Rate (Gain = 2 ZL = 150//5.6pF) VCC = 5V, ZL = 150//5.6pF)
5 4 3 2
5 4 3 2
Vout (V)
Vout (V)
1 0 -1 -2 -3 -4 -5 0 20 40 60 80 100
1 0 -1 -2 -3 -4 -5 0 20 40 60 80 100
Time (ns)
Time (ns)
18/33
Phase ()
Gain
-50
TSH70,71,72,73,74,75
Electrical Characteristics
Figure 38. Small signal measurement - rise Figure 39. Small signal measurement - fall time time (Gain = 2, VCC = 5V, ZL = 150) (Gain = 2, V CC = 5V, ZL = 150)
0.06
0.06
0.04
0.04
Vin, Vout (V)
Vin, Vout (V)
0.02
0.02
Vout
0
0
Vout Vin
-0.02
Vin
-0.02
-0.04
-0.04
-0.06 0 10 20 30 40 50 60
-0.06 0 10 20 30 40 50 60
Time (ns)
Time (ns)
Figure 40. Channel separation (Xtalk) vs. frequency (measurement configuration: Xtalk = 20log(V0/V1))
VIN
49.9
Figure 41. Channel separation (Xtalk) vs. frequency (Gain = +11, VCC = 5V, ZL = 150//27pF)
-20 -30
+ + 150
V1
Xtalk (dB)
-40 -50
4/1output 3/1output
100 1k
-60 -70 -80
2/1output
+ 49.9 100 1k 150
-90
VO
-100 -110 1E+4
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 42. Equivalent noise voltage (Gain =100, VCC = 5V, no load)
30
Figure 43. Maximum output swing (Gain = 11, V CC = 5V, RL = 150)
5 4
25
+ _
10k
3 2
Vout
Vin, Vout (V)
100
en (nV/Hz)
20
1 0 -1 -2
Vin
15
10
-3 -4
5 0.1 1 10 100 1000
-5 0.0E+0
5.0E-2
1.0E-1
1.5E-1
2.0E-1
Frequency (kHz)
Time (ms)
19/33
Electrical Characteristics Figure 44. Standby mode - Ton, Toff (VCC = 5V, open loop)
Vin
5
TSH70,71,72,73,74,75 Figure 45. Group Delay (Gain = 2, VCC= 5V ZL = 150//27pF, Tamb = 25C)
Vin, Vout (V)
Vout
0
Gain
-5
Ton
0 2E-6
Standby
4E-6 6E-6
Toff
8E-6
Group Delay
5.1ns
Time (s)
Figure 46. Third order intermodulation(1) (Gain = 2, VCC = 5V, ZL = 150//27pF, Tamb = 25C
0 -10 -20 -30
IM3 (dBc)
-40 -50 -60 -70 -80 -90
80kHz 740kHz
640kHz
-100 0 1 2 3
380kHz
4
Vout peak(V)
1. Note on intermodulation products: The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations.
.
20/33
TSH70,71,72,73,74,75
Testing Conditions
5
5.1
Testing Conditions
Layout precautions
To use the TSH7X circuits in the best manner at high frequencies, some precautions have to be taken for power supplies: - First of all, the implementation of a proper ground plane in both sides of the PCB is mandatory for high speed circuit applications to provide low inductance and low resistance common return. - Power supply bypass capacitors (4.7uF and ceramic 100pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and the positive pins.

Proper termination of all inputs and outputs must be in accordance with output termination resistors; in this way, the amplifier load will be resistive only, and the stability of the amplifier will be improved. All leads must be wide and as short as possible (especially for op-amp inputs and outputs) in order to decrease parasitic capacitance and inductance. For lower gain applications, care should be taken to avoid large feedback resistance (>1k) in order to reduce the time constant of parasitic capacitances. Choose component sizes as small as possible (SMD). Finally, on output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance as close as possible to the output pin to minimize capacitance.
5.2
Maximum input level
Figure 47. CCIR330 video line
The input level must not exceed the following values:

negative peak: must be greater than -VCC+400mV. positive peak value: must be lower than +VCC-400mV.
21/33
Testing Conditions
TSH70,71,72,73,74,75
The electrical characteristics show the influence of the load on this parameter.
5.3
Video capabilities
To characterize the differential phase and differential gain, a CCIR330 video line is used. The video line contains 5 (flat) levels of luma on which is superimposed chroma signal. The first level contains no luma. The luma gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the color of the signal. Differential phase (respectively differential gain) distortion is present if a signal chrominance phase (gain) is affected by luminance level. They represent the ability to uniformly process the high frequency information at all luminance levels. When differential gain is present, color saturation is not correctly reproduced. The input generator is the Rohde & Schwarz CCVS. The output measurement was done by the Rohde and Schwarz VSA.
Figure 48. Measurement on Rohde and Schwarz VSA
Table 7.
Video results
Value VCC = 2.5V
0.1 100 100 99.9 99.9 99.9 0 -0.7 0.7
Parameter
Lum NL Lum NL Step 1 Lum NL Step 2 Lum NL Step 3 Lum NL Step 4 Lum NL Step 5 Diff Gain pos Diff Gain neg Diff Gain pp
Value VCC = 5V
0.3 100 99.9 99.8 99.9 99.7 0 -0.6 0.6
Unit
% % % % % % % % %
22/33
TSH70,71,72,73,74,75 Table 7. Video results
Value VCC = 2.5V
-0.5 -0.7 -0.3 -0.1 -0.4 0 -0.2 0.2 -0.2 -0.1 -0.1 0 -0.2
Testing Conditions
Parameter
Diff Gain Step1 Diff Gain Step2 Diff Gain Step3 Diff Gain Step4 Diff Gain Step5 Diff Phase pos Diff Phase neg Diff Phase pp Diff Phase Step1 Diff Phase Step2 Diff Phase Step3 Diff Phase Step4 Diff Phase Step5
Value VCC = 5V
-0.3 -0.6 -0.5 -0.3 -0.5 0.1 -0.4 0.5 -0.4 -0.4 -0.3 0.1 -0.1
Unit
% % % % % deg deg deg deg deg deg deg deg
5.4
Precautions when operating on an asymmetrical supply
The TSH7X can be used with either a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+VCC/2). This bias network must be carefully designed, in order to reject any noise present on the supply rail. As the bias current is 15uA, you must carefully choose the resistance R1 so as not to introduce an offset mismatch at the amplifier inputs.
Figure 49. Schematic of asymmetrical (single) supply
IN Cin + R1 R2 R3 C1 Vcc+ C3 C2 R4 -
Cout OUT
R5
Cf
RL
R1 = 10K is a typical and convenient value. C1, C2, C3 are bypass capacitors that filter perturbations on VCC, as well as for the input and output signals. We choose C1 = 100nF and C2 = C3 = 100uF. R2, R3 are such that the current through them must be greater than 100 times the bias current. Therefore, we set R2 = R3 = 4.7K.
23/33
Testing Conditions
TSH70,71,72,73,74,75
Cin, as Cout, is chosen to filter the DC signal by the low-pass filters (R1,Cin and Rout, Cout). By taking R1 = 10K, RL = 150, and Cin = 2uF, Cout=220uF we provide a cut-off frequency below 10Hz.
Figure 50. Use of the TSH7x in gain = -1 configuration
Cf 1k IN Cin 1k Vcc+ R2 R3 C1 C2 C3
+
Cout OUT RL
R1
Some precautions must be taken, especially for low-power supply applications. A feedback capacitance, Cf, should be added for better stability. Table 8 summarizes the impact of the capacitance Cf on the phase margin of the circuit.
Table 8. Impact capacitance Cf
Cf (pF)
0 f-3dB Phase Margin 5.6 f-3dB Phase Margin 22 f-3dB Phase Margin 33 f-3dB 33.7 30.7 27.6 MHz 37 48 34 65 32 78 MHz deg 40 37 39.3 52 38.3 67 MHz deg 40 30 39.3 43 38.3 56 MHz deg
Parameter
Phase Margin
VCC = 1.5V
28
VCC = 2.5V
43
VCC = 5V
56
Unit
deg
24/33
TSH70,71,72,73,74,75
Package Mechanical Data
6
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK(R) packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
6.1
SO-8 Package
SO-8 MECHANICAL DATA
DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 8 (max.) 0.04 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157
0016023/C
25/33
Package Mechanical Data
TSH70,71,72,73,74,75
6.2
TSSOP8 Package
TSSOP8 MECHANICAL DATA
mm. DIM. MIN. A A1 A2 b c D E E1 e K L L1 0 0.45 0.60 1 0.05 0.80 0.19 0.09 2.90 6.20 4.30 3.00 6.40 4.40 0.65 8 0.75 0 0.018 0.024 0.039 1.00 TYP MAX. 1.2 0.15 1.05 0.30 0.20 3.10 6.60 4.50 0.002 0.031 0.007 0.004 0.114 0.244 0.169 0.118 0.252 0.173 0.0256 8 0.030 0.039 MIN. TYP. MAX. 0.047 0.006 0.041 0.012 0.008 0.122 0.260 0.177 inch
0079397/D
26/33
TSH70,71,72,73,74,75
Package Mechanical Data
6.3
SO-14 Package
SO-14 MECHANICAL DATA
DIM. A a1 a2 b b1 C c1 D E e e3 F G L M S 3.8 4.6 0.5 8.55 5.8 1.27 7.62 4.0 5.3 1.27 0.68 8 (max.) 0.149 0.181 0.019 8.75 6.2 0.35 0.19 0.5 45 (typ.) 0.336 0.228 0.050 0.300 0.157 0.208 0.050 0.026 0.344 0.244 0.1 mm. MIN. TYP MAX. 1.75 0.2 1.65 0.46 0.25 0.013 0.007 0.019 0.003 MIN. inch TYP. MAX. 0.068 0.007 0.064 0.018 0.010
PO13G
27/33
Package Mechanical Data
TSH70,71,72,73,74,75
6.4
TSSOP14 Package
TSSOP14 MECHANICAL DATA
mm. DIM. MIN. A A1 A2 b c D E E1 e K L 0 0.45 0.60 0.05 0.8 0.19 0.09 4.9 6.2 4.3 5 6.4 4.4 0.65 BSC 8 0.75 0 0.018 0.024 1 TYP MAX. 1.2 0.15 1.05 0.30 0.20 5.1 6.6 4.48 0.002 0.031 0.007 0.004 0.193 0.244 0.169 0.197 0.252 0.173 0.0256 BSC 8 0.030 0.004 0.039 MIN. TYP. MAX. 0.047 0.006 0.041 0.012 0.0089 0.201 0.260 0.176 inch
A
A2 A1 b e K c L E
D
E1
PIN 1 IDENTIFICATION
1
0080337D
28/33
TSH70,71,72,73,74,75
Package Mechanical Data
6.5
SO-16 Package
SO-16 MECHANICAL DATA
DIM. A a1 a2 b b1 C c1 D E e e3 F G L M S 8 3.8 4.6 0.5 9.8 5.8 1.27 8.89 4.0 5.3 1.27 0.62 (max.) 0.149 0.181 0.019 10 6.2 0.35 0.19 0.5 45 (typ.) 0.385 0.228 0.050 0.350 0.157 0.208 0.050 0.024 0.393 0.244 0.1 mm. MIN. TYP MAX. 1.75 0.2 1.65 0.46 0.25 0.013 0.007 0.019 0.004 MIN. inch TYP. MAX. 0.068 0.008 0.064 0.018 0.010
PO13H
29/33
Package Mechanical Data
TSH70,71,72,73,74,75
6.6
TSSOP16 Package
TSSOP16 MECHANICAL DATA
mm. DIM. MIN. A A1 A2 b c D E E1 e K L 0 0.45 0.60 0.05 0.8 0.19 0.09 4.9 6.2 4.3 5 6.4 4.4 0.65 BSC 8 0.75 0 0.018 0.024 1 TYP MAX. 1.2 0.15 1.05 0.30 0.20 5.1 6.6 4.48 0.002 0.031 0.007 0.004 0.193 0.244 0.169 0.197 0.252 0.173 0.0256 BSC 8 0.030 0.004 0.039 MIN. TYP. MAX. 0.047 0.006 0.041 0.012 0.0079 0.201 0.260 0.176 inch
A
A2 A1 b e K c L E
D
E1
PIN 1 IDENTIFICATION
1
0080338D
30/33
TSH70,71,72,73,74,75
Package Mechanical Data
6.7
SOT23-5 Package
SOT23-5L MECHANICAL DATA
mm. DIM. MIN. A A1 A2 b C D E E1 e e1 L 0.35 0.90 0.00 0.90 0.35 0.09 2.80 2.60 1.50 0 .95 1.9 0.55 13.7 TYP MAX. 1.45 0.15 1.30 0.50 0.20 3.00 3.00 1.75 MIN. 35.4 0.0 35.4 13.7 3.5 110.2 102.3 59.0 37.4 74.8 21.6 TYP. MAX. 57.1 5.9 51.2 19.7 7.8 118.1 118.1 68.8 mils
31/33
Revision History
TSH70,71,72,73,74,75
7
Revision History
Table 9.
Date
Nov. 2000 Aug. 2002
Document revision history
Revision
1 2 First Release. Limit min. of Isink from 24mA to 20mA (only on 3V power supply). Reason: yield improvement. Improvement of VOL max. at 3V and 5V power supply on 150ohm load connected to GND (pages 6 and 8). Reason: TSH7x can drive video signals from DACs to lines in single supply (3V or 5V) without any DC level change of the video signals. Grammatical and typographical changes throughout. Package mechanical data updated.
Changes
May 2006
3
32/33
TSH70,71,72,73,74,75
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
33/33


▲Up To Search▲   

 
Price & Availability of TSH7006

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X